Conoscere il cervello

Dr. Bruno C. Gargiullo

D.ssa R. Damiani

Nel vasto panorama della criminologia, esplorare le radici del comportamento criminale rappresenta un’impresa complessa e affascinante. Tra le molteplici teorie proposte nel corso degli anni, la teoria del basso autocontrollo, formulata da Gottfredson e Hirschi nel 1990, rappresenta un “faro guida” che ha illuminato il cammino degli studiosi per decenni (Gottfredson & Hirschi, 1990). Secondo questa teoria, l’assenza di autocontrollo è il “cuore pulsante” di molte azioni criminose: è quel “freno mancante” che permette agli individui di perseguire gratificazioni immediate senza alcuna considerazione per le conseguenze future delle loro azioni.

Da qui nasce la domanda: quali sono i fattori che modellano il nostro livello di autocontrollo? Gottfredson e Hirschi pongono la socializzazione, in particolare l’influenza genitoriale, al centro dello sviluppo dell’autocontrollo (Gottfredson & Hirschi, 1990). L’idea è che un’adeguata genitorialità, caratterizzata da un monitoraggio attento del comportamento dei figli e da pratiche disciplinari efficaci, possa favorire lo sviluppo di un sano autocontrollo. Eppure, man mano che ci addentriamo nei meandri della ricerca, emergono altre voci nel “coro” della spiegazione del comportamento criminale.

L’ambiente scolastico, ad esempio, si rivela un contesto cruciale per la formazione dell’autocontrollo

(Burtetal.,2006; Turneretal.,2005). Qui, i giovani possono apprendere non solo conoscenze accademiche, ma anche abilità sociali e comportamentali che influenzano il loro approccio alla vita e al rischio. I gruppi di pari, con le loro dinamiche complesse, giocano un ruolo altrettanto significativo, plasmando le inclinazioni e le decisioni dei giovani in modi che talvolta possono sfociare in comportamenti devianti.

Ma c’è di più. Recentemente, la ricerca ha aperto una nuova frontiera nello studio del comportamento criminale: le basi neurobiologiche dell’autocontrollo. Mentre Gottfredson e Hirschi tendono a trascurare il ruolo del cervello e dei fattori biologici, studi successivi hanno evidenziato il complesso legame tra il funzionamento cerebrale e il comportamento umano (Beaver et al., 2007; DeLisi, 2014; Jackson & Beaver, 2013). Si scopre che l’autocontrollo non è solo una questione di forza di volontà, ma è profondamente radicato nella nostra biologia.

Gli studiosi hanno scoperto che le differenze individuali nell’autocontrollo possono essere influenzate dalla genetica e da specifiche caratteristiche neurobiologiche. Ad esempio, deficit neuropsicologici, come una minore attività in alcune regioni del cervello coinvolte nell’inibizione del comportamento impulsivo (es., attenzione, memoria), possono predisporre gli individui a comportamenti antisociali e criminogeni (Cauffman et al., 2005; Jackson & Beaver, 2013; Ratchford & Beaver, 2009). Inoltre, fattori precoci come le complicazioni alla nascita e l’esposizione a sostanze nocive, durante la gravidanza,  possono avere un impatto duraturo sullo sviluppo dell’autocontrollo (Beaver & Wright, 2005; Meldrum & Barnes, 2016; Minnes et al., 2014).

Questo nuovo approccio, che integra la teoria del basso autocontrollo con scoperte nel campo della neuroscienza, offre una visione più completa e complessa del comportamento criminale. Sebbene la socializzazione rimanga un fattore cruciale, l’indagine sulle basi neurobiologiche dell’autocontrollo apre nuove frontiere per la prevenzione e l’intervento alla criminalità. Comprendere la complessa interazione tra natura e cultura nel determinare il comportamento umano non solo arricchisce il nostro bagaglio di conoscenze, ma ci avvicina anche a strategie più efficaci per la costruzione di comunità più sicure e resilienti.

Quindi, il concetto di “cervello delinquenziale”, utilizzato in passato per evidenziare l’esistenza di un nesso lineare di causa-effetto tra le caratteristiche cerebrali e il comportamento antisociale o criminale (rischio di stigmatizzazione della condotta violenta),  ha spinto i ricercatori a individuare le diverse variabili (eredità genetica, ambiente sociale e familiare, salute mentale, istruzione, esperienze avverse) che concorrono all’agire umano (violento e non).

Le moderne neuroscienze hanno identificato diverse regioni e circuiti neurali che possono contribuire alla genesi di un comportamento antisociale:

  • Lobo frontale, coinvolto nel controllo esecutivo, che include la pianificazione, la presa decisionale e l’inibizione comportamentale. Quando il lobo frontale non funziona correttamente, può verificarsi incapacità di controllare gli impulsi, mancanza di autocontrollo e difficoltà nel valutare le conseguenze delle proprie azioni. Questi deficit possono favorire la propensione a comportamenti antisociali o criminali.
  • Corteccia prefrontale mediale, responsabile della regolazione delle emozioni e dell’empatia. Quando la corteccia prefrontale mediale è compromessa, può verificarsi una mancanza di empatia ed una ridotta capacità di comprendere le emozioni degli altri. Ciò condurrebbe ad una mancanza di freni inibitori (aggressività reattiva).
  • Amigdala (piccola mandorla), coinvolta nel processamento delle emozioni, in particolare quelle legate alla paura e all’aggressività. Una sua iperattivazione può condurre un individuo a un discontrollo degli impulsi.
  • Sistema limbico, che ingloba diverse strutture tra cui l’amigdala e l’ippocampo (cavalluccio marino), coinvolto nella regolazione delle emozioni e delle risposte allo stress. Una sua disfunzionalità può influenzare la percezione delle minacce e la gestione dello stress, contribuendo così a comportamenti antisociali o criminali in situazioni di conflitto o pericolo.
  • Circuiti dopaminergici, coinvolti nella motivazione, nella ricompensa e nel rinforzo del comportamento. La disfunzionalità nei circuiti dopaminergici può incidere sulla ricerca di gratificazione immediata e il coinvolgimento in comportamenti ad alto rischio, che possono essere associati a comportamenti antisociali o criminali.

Tuttavia, ci dobbiamo soffermare sulle aree neurali come l’ACC (Corteccia Cingolata Anteriore), il dlPFC (Corteccia Prefrontale Dorsolaterale) e l’insula, le quali sono attive durante compiti che richiedono il controllo degli impulsi e il riconoscimento degli errori. Queste regioni cerebrali sono cruciali per il controllo esecutivo e l’adattamento comportamentale. Deficit in queste funzioni possono influenzare negativamente l’apprendimento e la regolazione comportamentale, associandosi a esiti disadattivi come comportamenti antisociali e criminali. In sintesi, lo studio delle basi neurobiologiche del controllo inibitorio e del monitoraggio degli errori offre una chiave importante per comprendere i meccanismi alla base del comportamento umano, con implicazioni significative per la prevenzione e l’intervento nei comportamenti devianti. È importante sottolineare che queste aree cerebrali e circuiti neurali interagiscono tra loro in modo complesso e sono influenzati da una vasta gamma di fattori, tra cui quelli genetici, ambientali e psicosociali. In conclusione, le ricerche sull’infanzia e sull’adolescenza, in merito allo sviluppo del comportamento delinquenziale, hanno dimostrato l’esistenza di una serie di fattori individuali (es. genetici, neurobiologici e neuropsicologici), sociali e ambientali che influenzerebbero un agire violento (multifattorialità).

Riferimenti bibliografici

Achenbach TM. Manual for the Youth Self-Report for ages 11–18. Burlington, VT: University of Vermonth Department of Psychiatry; 1991. [Google Scholar]

Agnew R. Foundation for a general strain theory of crime and delinquency. Criminology. 1992;30:47–88. [Google Scholar]

Aharoni E, Vincent GM, Harenski CL, Calhoun VD, Sinnott-Armstrong W, Gazzaniga MS, Kiehl KA. Neuroprediction of future rearrest. Proceedings of the National Academy of Sciences. 2013;110:6223–6228. [PMC free article] [PubMed] [Google Scholar]

Aron AR, Robbins TW, Poldrack RA. Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences. 2004;8:170–177. [PubMed] [Google Scholar]

Augustine JR. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews. 1996;22:229–244. [PubMed] [Google Scholar]

Bari A, Robbins TW. Inhibition and impulsivity: behavioral and neural basis of response control. Progress in Neurobiology. 2013;108:44–79. [PubMed] [Google Scholar]

Barkley RA. ADHD and the nature of self-control. New York: Guilford Press; 1997. [Google Scholar]

Barnes JC, Meldrum RC. The impact of sleep duration on adolescent development: A genetically informed analysis of identical twin pairs. Journal of Youth and Adolescence. 2015;44:489. [PubMed] [Google Scholar]

Beaver KM, DeLisi M, Vaughn MG, Wright JP. The intersection of genes and neuropsychological deficits in the prediction of adolescent delinquency and low self-control. International Journal of Offender Therapy and Comparative Criminology. 2010;54:22–42. [PubMed] [Google Scholar]

Beaver KM, Ferguson CJ, Lynn-Whaley J. The association between parenting and levels of self-control: A genetically informative analysis. Criminal Justice and Behavior. 2010;37:1045–1065. [Google Scholar]

Beaver KM, Eagle Schutt J, Boutwell BB, Ratchford M, Roberts K, Barnes JC. Genetic and environmental influences on levels of self-control and delinquent peer affiliation: Results from a longitudinal sample of adolescent twins. Criminal Justice and Behavior. 2009;36:41–60. [Google Scholar]

Beaver KM, Schwartz JA, Nedelec JL, Connolly EJ, Boutwell BB, Barnes JC. Intelligence is associated with criminal justice processing: Arrest through incarceration. Intelligence. 2013;41:277–288. [Google Scholar]

Beaver KM, Vaughn MG, DeLisi M, Barnes JC, Boutwell BB. The neuropsychological underpinnings to psychopathic personality traits in a nationally representative and longitudinal sample. Psychiatric Quarterly. 2012;83:145–159. [PubMed] [Google Scholar]

Beaver KM, Wright JP. Evaluating the effects of birth complications on low self-control in a sample of twins. International Journal of Offender Therapy and Comparative Criminology. 2005;49:450–471. [PubMed] [Google Scholar]

Beaver KM, Wright JP, DeLisi M. Self-control as an executive function: Reformulating Gottfredson and Hirschi’s parental socialization thesis. Criminal Justice and Behavior. 2007;34:1345–1361. [Google Scholar]

Boisvert D, Wright JP, Knopik V, Vaske J. Genetic and environmental overlap between low self-control and delinquency. Journal of Quantitative Criminology. 2012;28:477–507. [Google Scholar]

Botchkovar E, Marshall IH, Rocque M, Posick C. The importance of parenting in the development of self-control in boys and girls: Results from a multinational study of youth. Journal of Criminal Justice. 2015;43:133–141. [Google Scholar]

Bourre JM. Effects of nutrients (in food) on the structure and function of the nervous system: Update on dietary requirements for brain. Part 1: micronutrients. Journal of Nutrition Health and Aging. 2006;10:377–385. [PubMed] [Google Scholar]

Brett M, Anton JL, Valabregue R, Poline JB. Region of interest analysis using an SPM toolbox [abstract]. Presented at the 8th International Conference on Functional Mapping of the Human Brain; June 2–6, 2002; Sendai, Japan. 2002. Available on CD-ROM in Neuroimage. [Google Scholar]

Bufkin JL, Luttrell VR. Neuroimaging studies of aggressive and violent behavior: Current findings and implications for criminology and criminal justice. Trauma, Violence, & Abuse. 2005;6:176–191. [PubMed] [Google Scholar]

Burt CH, Simons RL, Simons LG. A longitudinal test of the effects of parenting and the stability of self-control: Negative evidence for the general theory of crime. Criminology. 2006;44:353–396. [Google Scholar]

Burt CH, Sweeten G, Simons RL. Self-control through emerging adulthood: Instability, multidimensionality, and criminological significance. Criminology. 2014;52:450–487. [Google Scholar]

Cauffman E, Steinberg L, Piquero AR. Psychological, neuropsychological and physiological correlates of serious antisocial behavior in adolescence: The role of self-control. Criminology. 2005;43:133–176. [Google Scholar]

Cecil CA, Barker ED, Jaffee SR, Viding E. Association between maladaptive parenting and child self-control over time: cross-lagged study using a monozygotic twin difference design. The British Journal of Psychiatry. 2012;201:291–297. [PubMed] [Google Scholar]

Connolly EJ, Beaver KM. Examining the genetic and environmental influences on self-control and delinquency: Results from a genetically informative analysis of sibling pairs. Journal of Interpersonal Violence. 2014;29:707–735. [PubMed] [Google Scholar]

Cope LM, Hardee JE, Soules ME, Burmeister M, Zucker RA, Heitzeg MM. Reduced brain activation during inhibitory control in children with COMT Val/Val genotype. Brain and Behavior. 2016;6:e00577. [PMC free article] [PubMed] [Google Scholar]

Critchley HD. Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Comparative Neurology. 2005;493:154–166. [PubMed] [Google Scholar]

Critchley HD, Wiens S, Rotshtein P, Ohman A, Dolan RJ. Neural systems supporting interoceptive awareness. Nature Neuroscience. 2004;7:189–195. [PubMed] [Google Scholar]

Cullen FT, Unnever JD, Wright JP, Beaver KM. Parenting and self-control. In: Goode E, editor. Out of control: Assessing the general theory of crime. Stanford, CA: Stanford Social Sciences; 2008. pp. 61–74. [Google Scholar]

DeLisi M. Self-control theory: The “Tyrannosaurus rex” of criminology is poised to devour criminal justice. Journal of Criminal Justice. 2011;39:103–105. [Google Scholar]

DeLisi M. Low self-control is a brain-based disorder. In: Barnes, Beaver, Boutwell, editors. The nurture versus biosocial debate in criminology: On the origins of criminal behavior and criminality. Thousand Oaks: Sage Publications; 2014. pp. 172–183. [Google Scholar]

de Ridder DT, Lensvelt-Mulders G, Finkenauer C, Stok FM, Baumeister RF. Taking stock of self-control: A meta-analysis of how trait self-control relates to a wide range of behaviors. Personality and Social Psychology Review. 2012;16:76–99. [PubMed] [Google Scholar]

de Ruiter MB, Oosterlaan J, Veltman DJ, van den Brink W, Goudriaan AE. Similar hyporesponsiveness of the dorsomedial prefrontal cortex in problem gamblers and heavy smokers during an inhibitory control task. Drug and Alcohol Dependence. 2012;121:81–89. [PubMed] [Google Scholar]

Devito EE, Meda SA, Jiantonio R, Potenza MN, Krystal JH, Pearlson GD. Neural correlates of impulsivity in healthy males and females with histories of alcoholism. Neuropsychopharmacology. 2013;38:1854–1863. [PMC free article] [PubMed] [Google Scholar]

Durston S, Thomas KM, Worden MS, Yang Y, Casey BJ. The effect of preceding context on inhibition: An event-related fMRI study. Neuroimage. 2002;16:449–453. [PubMed] [Google Scholar]

Efron B, Tibshirani RJ. An introduction to the bootstrap. Boca Raton, FL: CRC Press; 1993. [Google Scholar]

Eisenberg N, Haugen R, Spinrad TL, Hofer C, Chassin L, Zhou Q, … Liew J. Relations of temperament to maladjustment and ego resiliency in at-risk children. Social Development. 2010;19:577–600. [PMC free article] [PubMed] [Google Scholar]

Farrer TJ, Hedges DW. Prevalence of traumatic brain injury in incarcerated groups compared to the general population: A meta-analysis. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2011;35:390–394. [PubMed] [Google Scholar]

Feil J, Sheppard D, Fitzgerald PB, Yücel M, Lubman DI, Bradshaw JL. Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neuroscience & Biobehavioral Reviews. 2010;35:248–275. [PubMed] [Google Scholar]

Finkenauer C, Engels R, Baumeister R. Parenting behaviour and adolescent behavioural and emotional problems: The role of self-control. International Journal of Behavioral Development. 2005;29:58–69. [Google Scholar]

Gehring WJ, Goss B, Coles MGH, Meyer DE, Donchin E. A neural system for error detection and compensation. Psychological Science. 1993;4:385–390. [Google Scholar]

Gibson CL, Sullivan CJ, Jones S, Piquero AR. “Does it take a village?” Assessing neighborhood influences on children’s self-control. Journal of Research in Crime and Delinquency. 2010;47:31–62. [Google Scholar]

Glaser YG, Zubieta JK, Hsu DT, Villafuerte S, Mickey BJ, Trucco EM, … Heitzeg MM. Indirect effect of corticotropin-releasing hormone receptor 1 gene variation on negative emotionality and alcohol use via right ventrolateral prefrontal cortex. Journal of Neuroscience. 2014;34:4099–4107. [PMC free article] [PubMed] [Google Scholar]

Glover GH, Law CS. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magnetic Resonance in Medicine. 2001;46:515–522. [PubMed] [Google Scholar]

Gottfredson M, Hirschi T. A General Theory of Crime. Palo Alto, CA: Stanford University Press; 1990. [Google Scholar]

Hall JR, Bernat EM, Patrick CJ. Externalizing psychopathology and the error-related negativity. Psychological Science. 2007;18:326–333. [PMC free article] [PubMed] [Google Scholar]

Hardee JE, Weiland BJ, Nichols TE, Welsh RS, Soules ME, Steinberg DB, … Heitzeg MM. Development of impulse control circuitry in children of alcoholics. Biological Psychiatry. 2014;76:708–716. [PMC free article] [PubMed] [Google Scholar]

Hay C. Parenting, self-control, and delinquency: A test of self-control theory. Criminology. 2001;39:707–736. [Google Scholar]

Hay C, Forrest W. The development of self-control: Examining self-control theory’s stability thesis. Criminology. 2006;44:739–774. [Google Scholar]

Hay C, Meldrum R. Self-control and crime over the life course. Thousand Oaks, CA: Sage Publications; 2015. [Google Scholar]

Hayes AF. Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs. 2009;76:408–420. [Google Scholar]

Hayes AF. Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press; 2013. [Google Scholar]

Heitzeg MM, Nigg JT, Yau WYW, Zucker RA, Zubieta JK. Striatal dysfunction marks preexisting risk and medial prefrontal dysfunction is related to problem drinking in children of alcoholics. Biological Psychiatry. 2010;68:287–295. [PMC free article] [PubMed] [Google Scholar]

Heitzeg MM, Nigg JT, Hardee JE, Soules M, Steinberg D, Zubieta JK, Zucker RA. Left middle frontal gyrus response to inhibitory errors in children prospectively predicts early problem substance use. Drug and Alcohol Dependence. 2014;141:51–57. [PMC free article] [PubMed] [Google Scholar]

Hester R, Foxe JJ, Molholm S, Shpaner M, Garavan H. Neural mechanisms involved in error processing: A comparison of errors made with and without awareness. NeuroImage. 2005;27:602–608. [PubMed] [Google Scholar]

Holroyd CB, Coles MG. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review. 2002;109:679–709. [PubMed] [Google Scholar]

Ishikawa SS, Raine A. Prefrontal deficits and antisocial behavior: A causal model. In: Lahey BB, Moffitt TE, Caspi A, editors. Causes of Conduct Disorder and Juvenile Delinquency. New York: Guilford Press; 2003. pp. 277–304. [Google Scholar]

Jackson DB. The interplay between early language and temperamental difficulties in the prediction of severe antisocial behavior among males. Journal of Criminal Psychology. 2017;7:70–80. [Google Scholar]

Jackson DB, Beaver KM. The influence of neuropsychological deficits in early childhood on low self-control and misconduct through early adolescence. Journal of Criminal Justice. 2013;41:243–251. [Google Scholar]

Jackson DB, Beaver KM. The association between breastfeeding exposure and duration, neuropsychological deficits, and psychopathic personality traits in offspring: The moderating role of 5HTTLPR. Psychiatric Quarterly. 2016;87:107–127. [PubMed] [Google Scholar]

Jackson DB, Newsome J. The link between infant neuropsychological risk and childhood antisocial behavior among males: The moderating role of neonatal health risk. Journal of Criminal Justice. 2016;47:32–40. [Google Scholar]

Jackson DB, Vaughn MG. Household food insecurity during childhood and adolescent misconduct. Preventive Medicine. 2017;96:113–117. [PubMed] [Google Scholar]

Jackson DB, Vaughn MG, Salas-Wright CP. Poor nutrition and bullying behaviors: A comparison of deviant and non-deviant youth. Journal of Adolescence. 2017;57:69–73. [PubMed] [Google Scholar]

Jenkins JM, Rasbash J, O’Connor TG. The role of the shared family context in differential parenting. Developmental Psychology. 2003;39:99–113. [PubMed] [Google Scholar]

Jones AM. When in Rome: Testing the Moderating Influence of Neighborhood Composition on the Relationship Between Self-Control and Juvenile Offending. Crime & Delinquency. 2017;63(7):759–785. [Google Scholar]

Kerns JG, Cohen JD, MacDonald AW, III, Cho RY, Stenger VA, Carter CS. Anterior cingulate conflict monitoring and adjustments in control. Science. 2004;303(5660):1023–1026. [PubMed] [Google Scholar]

Kimbro RT, Denney JT. Transitions into food insecurity associated with behavioral problems and worse overall health among children. Health Affairs. 2015;34:1949–1955. [PubMed] [Google Scholar]

Klein TA, Endrass T, Kathmann N, Neumann J, von Cramon DY, Ullsperger M. Neural correlates of error awareness. NeuroImage. 2007;34:1774–1781. [PubMed] [Google Scholar]

Kort-Butler LA, Tyler KA, Melander LA. Childhood maltreatment, parental monitoring, and self-control among homeless young adults: Consequences for negative social outcomes. Criminal Justice and Behavior. 2011;38:1244–1264. [Google Scholar]

Kraemer HC, Kiernan M, Essex M, Kupfer DJ. How and why defining moderators and mediators differ between the Baron and Kenny and MacArthur approaches. Health Psychology. 2008;27:S101–S108. [PMC free article] [PubMed] [Google Scholar]

Lee TH, Telzer EH. Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence. Developmental Cognitive Neuroscience. 2016;20:35–42. [PMC free article] [PubMed] [Google Scholar]

Levin HS, Hanten G. Executive functions after traumatic brain injury in children. Pediatric Neurology. 2005;33:79–93. [PubMed] [Google Scholar]

Logan GD, Van Zandt T, Verbruggen F, Wagenmakers EJ. On the ability to inhibit thought and action: general and special theories of an act of control. Psychological Review. 2014;121:66–95. [PubMed] [Google Scholar]

Luijten M, Machielsen MW, Veltman DJ, Hester R, Haan LD, Franken IH. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. Journal of Psychiatry & Neuroscience. 2014;39:149–169. [PMC free article] [PubMed] [Google Scholar]

Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage. 2003;19(3):1233–1239. [PubMed] [Google Scholar]

Mattay VS, Goldberg TE, Fera F, Hariri AR, Tessitore A, Egan MF, Kolachana B, Callicott JH, Weinberger DR. Proceedings of the National Academy of Sciences of the United States of America. 2003;100:6186–6191. [PMC free article] [PubMed] [Google Scholar]

Meldrum RC, Barnes JC. Prenatal Exposure to Secondhand Smoke and the Development of Self-Control. Journal of Developmental and Life-Course Criminology. 2016 doi: 10.1007/s40865-016-0038-1. Online First. [CrossRef] [Google Scholar]

Meldrum RC, Hay C. Do peers matter in the development of self-control? Evidence from a longitudinal study of youth. Journal of Youth and Adolescence. 2012;41:691–703. [PubMed] [Google Scholar]

Meldrum RC, Petkovsek MA, Boutwell BB, Young JTN. Reassessing the relationship between general intelligence and self-control in childhood. Intelligence. 2017;60:1–9. [Google Scholar]

Meldrum RC, Young JT, Hay C, Flexon JL. Does self-control influence maternal attachment? A reciprocal effects analysis from early childhood through middle adolescence. Journal of Quantitative Criminology. 2012;28:673–699. [Google Scholar]

Meldrum RC, Young JT, Lehmann PS. Parental low self-control, parental socialization, young adult low self-control, and offending a retrospective study. Criminal Justice and Behavior. 2015;42:1183–1199. [Google Scholar]

Meldrum RC, Young JT, Weerman FM. Changes in self-control during adolescence: Investigating the influence of the adolescent peer network. Journal of Criminal Justice. 2012;40:452–462. [Google Scholar]

Minnes S, Min MO, Short EJ, Wu M, Lang A, Yoon S, Singer LT. Executive function in children with prenatal cocaine exposure (12–15years) Neurotoxicology and Teratology. 2016;57:79–86. [PMC free article] [PubMed] [Google Scholar]

Moffitt TE. The neuropsychology of juvenile delinquency: A critical review. In: Tonry M, Morris N, editors. Crime and Justice: An Annual Review of Research. Chicago: University of Chicago Press; 1990. pp. 99–169. [Google Scholar]

Moffitt TE. The neuropsychology of conduct disorder. Development and Psychopathology. 1993a;5:135–151. [Google Scholar]

Moffitt TE. Adolescence-limited and life-course-persistent antisocial behavior: A developmental taxonomy. Psychological Review. 1993b;100:674–701. [PubMed] [Google Scholar]

Moffitt TE, Arseneault L, Belsky D, Dickson N, Hancox RJ, Harrington H, … Sears MR. A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences. 2011;108:2693–2698. [PMC free article] [PubMed] [Google Scholar]

Moffitt TE, Lynam DR, Silva PA. Neuropsychological tests predicting persistent male delinquency. Criminology. 1994;32:277–300. [Google Scholar]

Noll DC, Fessler JA, Sutton BP. Conjugate phase MRI reconstruction with spatially variant sample density correction. IEEE Transactions on Medical Imaging. 2005;24:325–336. [PubMed] [Google Scholar]

Olds DL, Kitzman H, Cole R, Robinson J, Sidora K, Luckey DW, … Holmberg J. Effects of nurse home-visiting on maternal life course and child development: Age 6 follow-up results of a randomized trial. Pediatrics. 2004;114:1550–1559. [PubMed] [Google Scholar]

Paus T, Petrides M, Evans AC, Meyer E. Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: A positron emission tomography study. Journal of Neurophysiology. 1993;70:453–469. [PubMed] [Google Scholar]

Perrone D, Sullivan CJ, Pratt TC, Margaryan S. Parental efficacy, self-control, and delinquency: A test of a general theory of crime on a nationally representative sample of youth. International Journal of Offender Therapy and Comparative Criminology. 2004;48:298–312. [PubMed] [Google Scholar]

Posner MI, Rothbart MK, Sheese BE, Tang Y. The anterior cingulate gyrus and the mechanism of self-regulation. Cognitive, Affective, & Behavioral Neuroscience. 2007;7:391–395. [PubMed] [Google Scholar]

Pratt TC, Cullen FT. The empirical status of Gottfredson and Hirschi’s general theory of crime: A meta-analysis. Criminology. 2000;38:931–964. [Google Scholar]

Pratt TC, Turanovic JJ, Fox KA, Wright KA. Self-control and victimization: A meta-analysis. Criminology. 2014;52:87–116. [Google Scholar]

Pratt TC, Turner MG, Piquero AR. Parental socialization and community context: A longitudinal analysis of the structural sources of low self-control. Journal of Research in Crime and Delinquency. 2004;41:219–243. [Google Scholar]

Preacher KJ, Rucker DD, Hayes AF. Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research. 2007;42:185–227. [PubMed] [Google Scholar]

Prinz RJ, Sanders MR, Shapiro CJ, Whitaker DJ, Lutzker JR. Population-based prevention of child maltreatment: The US Triple P system population trial. Prevention science. 2009;10:1–12. [PMC free article] [PubMed] [Google Scholar]

Ratchford M, Beaver KM. Neuropsychological deficits, low self-control, and delinquent involvement: Toward a biosocial explanation of delinquency. Criminal Justice and Behavior. 2009;36:147–162. [Google Scholar]

Raudenbush SW, Bryk AS. Hierarchical linear models: Applications and data analysis methods. Vol. 1. Sage; 2002. [Google Scholar]

Rubia K, Russell T, Overmeyer S, Brammer MJ, Bullmore ET, Sharma T, … Taylor E. Mapping motor inhibition: Conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage. 2001;13:250–261. [PubMed] [Google Scholar]

SAS Institute Inc. Base SAS® 9.4 Procedures Guide. Cary, NC: SAS Institute Inc; 2013. [Google Scholar]

Schwartz JA, Connolly EJ, Brauer JR. Head injuries and changes in delinquency from adolescence to emerging adulthood: The importance of self-control as a mediating influence. Journal of Research in Crime and Delinquency. 2017 OnlineFirst: 0022427817710287. [Google Scholar]

Shaw CR, McKay HD. Juvenile delinquency and urban areas. Chicago, IL: University of Chicago Press; 1942. [Google Scholar]

Shields AM, Cicchetti D, Ryan RM. The development of emotional and behavioral self-regulation and social competence among maltreated school-age children. Development and Psychopathology. 1994;6:57–75. [PubMed] [Google Scholar]

Stadler C, Sterzer P, Schmeck K, Krebs A, Kleinschmidt A, Poustka F. Reduced anterior cingulate activation in aggressive children and adolescents during affective stimulation: Association with temperament traits. Journal of Psychiatric Research. 2007;41:410–417. [PubMed] [Google Scholar]

Sutton BP, Noll DC, Fessler JA. Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities. IEEE Transactions on Medical Imaging. 2003;22:178–188. [PubMed] [Google Scholar]

Tangney JP, Baumeister RF, Boone AL. High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. Journal of Personality. 2004;72:271–324. [PubMed] [Google Scholar]

Taylor SF, Stern ER, Gehring WJ. Neural systems for error monitoring recent findings and theoretical perspectives. The Neuroscientist. 2007;13:160–172. [PubMed] [Google Scholar]

Teasdale B, Silver E. Neighborhoods and self-control: Toward an expanded view of socialization. Social Problems. 2009;56:205–222. [Google Scholar]

Tomoda A, Suzuki H, Rabi K, Sheu YS, Polcari A, Teicher MH. Reduced prefrontal cortical gray matter volume in young adults exposed to harsh corporal punishment. Neuroimage. 2009;47:T66–T71. [PMC free article] [PubMed] [Google Scholar]

Turner MG, Livecchi CM, Beaver KM, Booth J. Moving beyond the socialization hypothesis: The effects of maternal smoking during pregnancy on the development of self-control. Journal of Criminal Justice. 2011;39:120–127. [Google Scholar]

Turner MG, Piquero AR, Pratt TC. The school context as a source of self-control. Journal of Criminal Justice. 2005;33:327–339. [Google Scholar]

Twardosz S, Lutzker JR. Child maltreatment and the developing brain: A review of neuroscience perspectives. Aggression and Violent Behavior. 2010;15:59–68. [Google Scholar]

Umbach R, Raine A, Gur RC, Portnoy J. Neighborhood disadvantage and neuropsychological functioning as part mediators of the race–antisocial relationship: A serial mediation model. Journal of Quantitative Criminology. 2017 doi: 10.1007/s10940-017-9343-z. [CrossRef] [Google Scholar]

Vaske J, Newsome J, Boisvert D. The mediating effects of verbal skills in the relationship between low birth weight and childhood aggressive behaviour. Infant and Child Development. 2013;22:235–249. [Google Scholar]

Vaughn MG, Salas-Wright CP, Naeger S, Huang J, Piquero AR. Childhood reports of food neglect and impulse control problems and violence in adulthood. International Journal of Environmental Research and Public Health. 2016;13:1–17. [PMC free article] [PubMed] [Google Scholar]

Vazsonyi AT, Huang L. Where self-control comes from: On the development of self-control and its relationship to deviance over time. Developmental Psychology. 2010;46:245–257. [PubMed] [Google Scholar]

Vazsonyi AT, Mikuška J, Kelley EL. It’s time: A meta-analysis on the self-control-deviance link. Journal of Criminal Justice. 2017;48:48–63. [Google Scholar]

Verberne AJ, Owens NC. Cortical modulation of the cardiovascular system. Progress in Neurobiology. 1998;54:149–168. [PubMed] [Google Scholar]

Vera EP, Moon B. An Empirical Test of Low Self-Control Theory: Among Hispanic Youth. Youth Violence and Juvenile Justice. 2013;11:79–93. [Google Scholar]

Villafuerte S, Heitzeg MM, Foley S, Yau WW, Majczenko K, Zubieta JK, … Burmeister M. Impulsiveness and insula activation during reward anticipation are associated with genetic variants in GABRA2 in a family sample enriched for alcoholism. Molecular Psychiatry. 2012;17:511–519. [PMC free article] [PubMed] [Google Scholar]

Wechsler D. Wechseler Intelligence Scale for Children. 3. San Antonio, TX: Harcourt Brace & Company; 1991. [Google Scholar]

Woltering S, Granic I, Lamm C, Lewis MD. Neural changes associated with treatment outcome in children with externalizing problems. Biological Psychiatry. 2011;70:873–879. [PubMed] [Google Scholar]

Wright JP, Beaver KM. Do parents matter in creating self-control in their children? A genetically informed test of Gottfredson and Hirschi’s theory of low self-control. Criminology. 2005;43:1169–1202. [Google Scholar]

Wright J, Beaver K, Delisi M, Vaughn M. Evidence of negligible parenting influences on self-control, delinquent peers, and delinquency in a sample of twins. Justice Quarterly. 2008;25:544–569. [Google Scholar]

Wright BRE, Caspi A, Moffitt TE, Silva PA. Low self-control, social bonds, and crime: Social causation, social selection, or both? Criminology. 1999;37:479–514. [Google Scholar]

Yang Y, Raine A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Research: Neuroimaging. 2009;174:81–88. [PMC free article] [PubMed] [Google Scholar]

Yancey JR, Venables NC, Hicks BM, Patrick CJ. Evidence for a heritable brain basis to deviance-promoting deficits in self-control. Journal of Criminal Justice. 2013;41:309–317. [PMC free article] [PubMed] [Google Scholar]

Zucker RA. Manual for the Antisocial Behavior Checklist. Ann Arbor, MI: Department of Psychiatry and Addiction Center, University of Michigan; 2005. [Google Scholar]

Zucker RA, Ellis DA, Fitzgerald HE, Bingham CR, Sanford K. Other evidence for at least two alcoholisms II: Life course variation in antisociality and heterogeneity of alcoholic outcome. Development and Psychopathology. 1996;8:831–848. [Google Scholar]

Zucker RA, Fitzgerald HE, Refior SK, Puttler LI, Pallas DM, Ellis DA. The clinical and social ecology of childhood for children of alcoholics: Description of a study and implications for a differentiated social policy. In: Fitzgerald HE, Lester BM, Zuckerman BS, editors. Children of addiction: Research, health and policy issues. New York: Garland Press; 2000. pp. 174–222. [Google Scholar]

Zucker RA, Noll RB. Unpublished instrument. Michigan State University, Department of Psychology; East Lansing: 1980. The Antisocial Behavior Checklist. [Google Scholar]